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Abstract

For a positive Borel measure du, we prove that the constant

o (e du) J2 P (x)dv(x)

P = S JZ m(x)dp(x)’
can be represented by the zeros of orthogonal polynomials corresponding to du in case (i)
dv(x) = (A + Bx)du(x), where A + Bx is nonnegative on the support of du and (ii) dv(x) =
(A 4 Bx*)du(x), where du is symmetric and 4 + Bx? is nonnegative on the support of du. The
extremal polynomials attaining the constant are obtained and some concrete examples are
given including Markov-type inequality when du is a measure for Jacobi polynomials.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let du be a positive Borel measure on R with infinite support whose moments are
all finite. Then there exists an orthonormal polynomial system {P,(du;x)},-, with
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respect to du such that

/ Pon(dp; X)Po(dit; X)du(x) = Sy m,n=0,1,2, ..,

— 00

where J,,, is the Kronecker delta. One of the most important properties for
{P,(du; x)},-, is the three term recurrence relation

XPn(d,u;x) = an+1Pn+1(dﬂ;x) + ann(d,u;x) + anPrhl(d,u;x)a n=0,1,2,...,
1
where P_j(x) =0, Po(du; x) = ([ du(x))2, and
an = an(dp) = / d xPy(dp; x) Py (dp; x)du(x), n=1,

0
b, = b,(dp) = / xP2(dw; x)du(x), n=0.

o0
It is interesting to find the best possible constant y, = y,(dv; du) such that
||n||dv</))n||n||d‘u7 7'L'€,J7n, (11)

where 2, is the space of all real polynomials of degree at most n, dv is another
positive Borel measure on R, and

= { [ #duco

The constant y, can be redefined by
Valdvidu) = Sug{lln\ldv Al g = 13-
nEeY

=

For du(x) = (1 — x)*(1 4+ x)? dx dnd dv(x)
estimated in [1,4] and fora = f = 2, y=0=
of 7y, was obtained by Rafalson [5].

In this paper, we will prove that the constant y, can be expressed by the zeros of
orthonormal polynomials with respect to du in cases (i) dv(x) = (4 + Bx)du(x),
where A4 + Bx is nonnegative on the support of du and (ii) dv(x) = (4 + Bx?)du(x),
where dy is symmetric and 4 + Bx? is nonnegative on the support of du. The
extremal polynomial attaining y, is obtained and some concrete examples are given
including Markov-type inequality when du is a measure for Jacobi polynomials.

(1-
ora =0 =1, the exact value

x)'(1+ ) on [—1,1], y, was
=b=3

30
2

2. Case dv(x) = (4 + Bx)dp(x)

The zeros of orthogonal polynomial P,(dp;x) are denoted by
X1p(du) > x5 (dp) > -+ > xp,(du). Then by the Gauss quadrature formula, we have

s, Lo
S 7, R0t 21

X1,n+1 (d:u)
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and
0
S ( Jdu(x)

xn+l.n+1(d,u) = MiNgc» A\ {0} foo dﬂ( )

The maximum and the minimum in (2.1) and (2.2) are attained if and only if n(x) =

(2.2)

Py (d Py (d
Lunldiit) op () = Lol pogpectively, where ¢ is a nonzero constant. Using
X—=X141(dpt) X—=Xni10r1(dp)’

these formula, we can easily prove:

Theorem 2.1. Let dv(x) = g(x)du(x), where g(x) = A + Bx is nonnegative on the
support of du. Then

(d d ) { ( )} g(xl,n+l) if B}Oa (2 3)
V; = max Xien = .
T H k=12,....n+1 9\ Xien1 g(xn+l,n+l) if B<0
and
1
. 2 Xy 2 if B=0,
v, (dw; dv) = {klrynnﬂg(xkywl)} = 9, n+13 (2.4)
o g(x1 n-H) 2 if B<0,

where X pi1 = Xipr1(dp). The constants y,(dv; dp) in (2.3) and y,(du; dv) in (2.4) are

oo . Pui(d
attained if and only if n(x) = % where c is a nonzero constant and
n+

1 if B=0 n+1 if B=0
k: k:

fi dv:d for v, (du: dv).
w1l if B<o O Ya(dvidp), | £ oo 0T v (dus dv)

Proof. By the Gauss quadrature formula, we have for any ne 2,

/jc 7 (x)dv(x) = /jc (A + Bx)m*(x)du(x)
n+1
Z Jieni1 (A + Bxg i) )7 (Xkns1)
=1

n+1

< max (A4 Bxgpg) Z M1 T (Xie 1)
=12, 41 —

max | glner) [ @0duC) (2.5)

k=12,....n+ 0

where Ak 1 = Agnr1(dp) are the Christoffel numbers for the measure dyu. Now
assume B>0. Then maxk 12,41 9(Xk 1) = g(x1441) and we have the equality in

(2.5) for n(x) = Lre1 () o L. Conversely if the equality holds in (1.1) for n(x), then the

X=X n

equality holds also in (2.5) so that m(xgu41) =0, 2<k<n+1. Hence n(x) =

CPrHrl
X=X 41’

¢#0. This proves (2.3) when B>=0. In case B<0, the proof is similar. Finally
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Eq. (2.4) can be proved by a similar process using (2.2) instead of (2.1) and

fﬂ

2 (x)dp(x)

|

ya(dusdv) = max

rez\0y [7 m2(x)dv(x)
* o (x)dv(x -
{mmne/; {0} W} . O (2.6)

Corollary 2.2. Let dv(x) = (1 —x)*(1 +x)’dx, du(x)=(1—x)"(14+x)°dx on
[-1,1], and (p“ﬁ( ) = 7,(dv;du), where o, B,7,6> — 1. Then

3/21/2 . 1/2 3/2, N
1/21/2(”) 1/21/2(”) = V2cos

~—

T
2(n+2

-1
1/2,1)2 1/2,1/2 . T
3?21?2( )_‘91?23;2( ) = (\/ism2(n+ 1)) ;

1/2,-1/2 _ 1212 . L
Py 1/2(") = <P_1/2’_1/2(n) = \/50054 :

-1
~1/2,-1/2 ~1/2,-1/2
Pi2,-1)2 (n) =o_ 1/2,1/2 (n) = (\/_Sln 4(n Jrl)) :

Proof. Let g(x) = 1 — x. Since the smallest zero of Chebychev polynomial U, (x)

of the second kind is —cos ;75,

o 2cos T
n+2 2(n+2)

3/2,1/2
P1/3112(n) = /14 cos (2.7)

All others can be proved similarly by Theorem 2.1. O

Example 2.1. Let du(x) = x*¢ ¥ dx and dv(x) = x du(x) on [0, c0), where o> — I.
Using the asymptotic behavior of the greatest zero xj ;. of the Laguerre polynomial
L(“)

n+l(x) [6], we can use

lim Za( AR o VYL
n— oo 2\/ﬁ n— oo Zﬁ

Let dv(x) = g(x)du(x), where ge 2, is nonnegative on [0, c0). Then by the same
process as in the proof of Theorem 2.1, we have for any ne %,

/ (x)dv(x)<  max g(xk_,Hm)/ (x)du(x), m= VL]
0 k=12,....n+m ' 0 2
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and

/ V m*(x)dv(x)> min g(x,(.wm)/ 2(0)du(x), m— {/ + 1].
0 k=12,....n+m ’ 0 —2

Hence, we obtain an estimation for y,(dv; du):

: 2
e 9(Xknem) <y, (dvidp) < po K 9(Xkpnsm)- (2.8)

But, estimate (2.8) is not sharp in general if />2.

3. Case dv(x) = (4 + Bx?*)dp(x)

In this section, du is assumed to be symmetric and so the corresponding
orthonormal polynomials satisfy

xPy(dp; x) = ayi1 Pur (dp; x) + ay Py (dp; x),  n=0.

Lemma 3.1. Let du be symmetric. Then we have

T 7 X (x)du(x)
rez\ 0} [P 72(x)dp(x)

X1.n42 (d,u) =

and equality holds if and only if n(x) = ‘x});’*_’vw, where ¢ is a nonzero constant.
M2

Proof. See Theorem 2 in [2]. [

Lemma 3.2. For any (n+ 1) x (n+ 1) matrix W (n=1),

% 0 B 0O 0 0 0
0 s 0 B 0 0 0
ﬁl 0 o 0 B3 0 0
0 0 0 i 0
w| O B0 om0 _ (3.1)
ﬁn—l
Oln—1 0

0 « o o 0 B, O %,
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we have |W| = |U||V|, where |W| is the determinant of the matrix W,

o B O 0 0 0
B o B 0 0 0
0 B3 oag Bs O : .
0
. . . . Gom—2 ﬁZm— 1
0 oo e e 0 Poyui  Oom
and
o f, O 0 0 0
By o3 By O O - 0
0 By os P 0 "
v—|o o . . . 0 [ = n—1
’ ST b 2 ]
0
0/—1 ﬁz/
0 e e 0 Boy 02

Proof. We only prove the case n = 2m even since the other case can be proved by
same way. Let

W =[G, C, ..., Cyl,

where C; is the ith column of 7. By moving every even column of W to the right, we
obtain

Wy =[Co, Cy, ..., Cy, C1, Cs, .., ]
Write the transpose W of W; as
wl =[c,,Cl,...,Cl,

where C} is the ith column of W]. By moving every even column of W] to the right,
we obtain

wh,=[C,C),...,CL.Cl,C, ..., CL

(@)

Then |W| = |[W,| = |U||V]. O
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Theorem 3.3. Let dv(x) = (A + Bx?*)du(x), where A+ Bx* is nonnegative on the
support of du. If du is symmetric, then

\/A+Bxi,,, if B=0,

v, (dvidu) = A+ Bxl,,,, if B<0and n=2s, (3.2)

,/A—&—Bxf,ﬂ_’n+1 if B<Oand n=2s+1

and

1
(A+ B2, 52 if B<O,

1
u(dp;dv) = § (A4 + Bx2,,,,,)2 if B>0 and n=2s, (3-3)

I
(A+Bxj,,,.,) 2 if B>0and n=2s+1.

Proof. We will prove only (3.2). Then (3.3) can be proved by a similar process with
(2.6). When B=0, it is trivial and so we may assume B#0. Let =n(x)=
> k—o ¢k Pr(du; x). Then by the three term recurrence relation,

(A + Bx*)n(x) = 2”: (A + Bx?)cp Py (x)
k=0

= [A+ Bla,, + ap)lePr(x)

=0
n+2 n—2

+ g Bakakflckfzpk(x)'f‘g Bajrap 1 ci2Pr(x),
k=2 k=0

where ay = ar(dp) and Pi(x) = Pr(dyp;x). Hence, by the orthonormality of
{Pu(x)},20;

0 n n—2
/ 7 (x)dv(x) = [A+ Blap,, +a)|c; +2 Z Baj2aj 1 crcin.
- k=0

o0 k=0 =

If we assume that ||z||,, =1, that is, >_}_oc; = 1, then

n n—2
v2(dv;dp) = Zgna;g {Z [A+ B(al,, +a)lc; +2 Z Bak+2(lk+1€k0k+2}7
k=0 %=1 L k=0 k=0

which is equal to max{|A| : 4 is an eigenvalue of W}, where W is matrix (3.1) with
o = A+ B(a} +ai.,) and B, = Bayay.,. By Lemma 3.2, y,(dv : du) = max{|] :
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Un(A) =0 or V,(A) = 0}, where

w—4 B 0 0 0 0
b w =4 P 0 0 0
ﬁ} oy — VR ) 0 0
Un(A)=| 0 0 ' A 0 (m - ED
) . . 0
Gom-2 =4 ooy
0 0 Bom_1 U — A
and
w—4 B 0 0 0 0
ﬁz o3 — A ﬂ4 0 0 0
0 ﬁ4 os —A -, 0 0
Vi(i)=| 0 0 ‘ R 0
) . ' 0
U1 — A Bar
0 e 0 By 0yl — A

n—1
(=1=1)
Now zeros of U, (4) and V,(A) are the zeros of orthonormal polynomials S, 1(x)

and T, (x), respectively, satisfying

xSk = Bari2a0i11Sks1 + [A + B(a%k+1 + a%k)]Sk + Bayiazi_1Sk_1, (3.4)

xTyx = BayxzariaTri1 + [A + B(a%k+2 + a%k_;_])}Tk + Bari a0 Ty . (3.5)
On the other hand, since du is symmetric, if we set
Qk(xz) = Py (dy; x) and ka(xz) = Pyy1(du;x), k=0, (3.6)

then {Qk(x)},~, and {Ri(x)};-, are orthonormal polynomials satisfying the three
term recurrence relations

X0k (x) = ar2a2k41 Q41 (x) + (agkﬂ + “%k)Qk(x)

+ axyary-10k-1(x), k=0, (3.7)
XRi(X) = as3a0k2 Rt (x) + (a§k+2 + ang)Rk(x)
+ aZk+la2kRk71(x)7 k=0. (3.8)

Then {Q,(5(x — A))},~ and {R,(5(x — A))},-, satisfy the recurrence relations (3.4)
and (3.5), respectively. Hence,

Smi1(X) = Omp1 (llg(x - A)) and Ty41(x) = Rrpy (ll;(x - A))-
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From relation (3.6), Qui1(X;a,42) =0, k=1,2,...,m+1, and Ry1(x;,,,3) =0,
k=1,2,....,/+ 1 and so

Smi1(A+ Bxjo0) =0, k=12, m+1,

Tr(A+Bxi,5) =0, k=12,../+1

Hence
ya(dvidp) = max {4+ BXj o0, A+ Bx;o, 5}
k=12,....m+1; )
J=12,.../+1
[ A+ Bmax{xi,, X753} if B>0
A+ Bmin{x;, | 5,12, % 12743} if B<O.

If B>0 and n = 2s is even, then m = s and / = s — 1 so that
yaldvidp) = A+ BX%,st =4+ Bx%,mz-
If B>0and n =25+ 1 is odd, then m = s and / = s so that
“/%l(d"; du) = A+ Bx%,zs-w =A+ Bx%,n-ﬁ—Z'
If B<0 and n = 2s is even, then m = s and / = s — 1 so that
yaldvidu) = A+ Bx§+1,2s+2 = A+ Bx},1 1
since 0 <Xgp)n+1 <Xgut1. If B<0 and n =25+ 1 is odd,then m =/ = s so that
ya(dvidu) = A+ Bx§+1,2s+2 =4+ Bx§+l‘n+l'

since 0 <Xgy) 41 <Xgp1,42. Hence, the conclusion follows. [

Note that the constant y,(dv;dp) in (2.2) is attained if and only if
CPn+2 (d/,t, X)
2

5 if B>0,
() X5 = X 40
(x) =
CQS+1(X) :
————— if B<O,

2 _
X 'xs+1 2542

where ¢ 1s a nonzero constant.

Corollary 3.4. Ler dv(x) = (1 —x)*(1+x)"dx, du(x)=(1—x)(1+x)°dx on
[-1,1], and (,/)f‘g(n) =y, (dv;du), where o, f,7,0> — 1. Then
T

cos——— if n is even,
3/23/2, 8 2(n+3)
(/’1/2.,1/2(”) = T .
cos——— if n is odd,
2(n+2)

-1
1212, .. T
(p3/273/2(n) = (sanr 3> ,
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T
cos if n is even,
1/2,1/2 (n) = 2(n+2)
oo cos——— if nis odd
(n+1) ’
-1
—1/2,-1/2 o T
P11 (n) = (51n2(n+2)) )

Proof. If x = =3 and y = § =1, then dv(x) = (1 — x*)du(x) and the orthonormal
polynomials {U,(x)},~, with respect to du are the Chebychev polynomials of the
second kind, whose zeros are

kn
(d) = cos—L— k=12, ...,
Xjen (d ) e n

Hence, by Theorem 3.3, if n = 25, then

3/23/2, N PN G R VL i
P1/212(1) = /1 —cos 25+3 _COS2(H+3)

and if n = 25 + 1, then

3/23/2, 8 ,(s+)n T
1/271/2(11) =4/1 — cos? %513 COSZ(n+ %)

All the other cases can be obtained similarly by Theorem 3.3 and the zeros of the
Chebychev polynomials of the first and the second kinds. [

Corollary 3.5. Let du be symmetric. Then we have

“ X2t (x)d X2 if n=2s,
min f, ( )du(x) _ ;+1,n+2 . (3.9)
rez M0} [T m2(xX)du(x) Nopipp Af n=2s+1.
The minimum is attained if and only if n(x) = % when n = 2s and n(x) =
SH1n+2

cPus1 (dx)
e p—r

s+1n+1

when n = 25 + 1, where ¢ is a nonzero constant.

x)d
Proof. Take 4 =0 and B =1 in Theorem 3.3. Then mmne]”\{o}fzi();’:())
72 (x)du(x

7, 2(dw; dv) and so (3.9) holds by Theorem 3.3. By the Gauss quadrature formula and
(2.6), we can show that the minimum is attained only when
an+2(dM; x)
X — s+1 n+2<d:u)
CPn+1 (d; x)
R )

if n=2s,

m(x) =

if n=2s+1,

where ¢ is a nonzero constant. [
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The following sharp inequality was proved in [3] (see also [1] for o = p). If ne 2,
and o, f> — 1, then

In+o+f+m+1)
(m) <. |- 3.10
||TE ||m+0(.m+ﬂ \/(n — m)'F(n o ﬁ 1)||7T||O(_ﬁa ( )

where

I7ll = ( / 72 (x)(1 - x)*(1 + x)ffdx) .

Applying Theorem 2.1 iteratively, if o« = f§ + k, then

||7r<'”>|| - nFn+o+pf+m+1) ™
st =N —m)T(n+ o+ p+ 1) PHEP

o=

o ML+t fm 1) ’ﬁ B
(n=m)F(n+o+p+1) Ly el

k—1

| nTr(ndoa+p+m+1) Yy
_\/(n—m)!l"(n+oc+ﬁ+1) g(l_xnﬂnﬂ) 17llgp  (3.11)

where {x,fﬁ}',iil denotes the zeros of Jacobi polynomial Py*”)(x). Similarly, if o =
p — k, then

In+o+pf+m+1) 55
(m) n I | 0(0(+]
||nm ||oc+m,/)’+m<\/<n_m)!r( +O€+ﬁ+ it 1n+1 ||n||:x,oc

Combining Theorem 3.3 and applying Theorem 2.1 again, we obtain a Markov type
inequality. More precisely, if o = 4 k, then

k-1
g +,
||7T(m ||O(+l‘)7 ﬁ+m\ Da/ 1- x£+jlfl+1 HTC”'B'B

B+i.B ﬂ+ Bt 5
Dz 51 1 - xn+]1 i+l H 1 - xl n]+2 j ) 2 ||n||[)’+k+m,ﬁ+m

k—1 1— xﬁ+{’/£ . m—1
_ np n+1,n+ B+i.B+/\2
Dn am H 1 B+m+j,f+m (1 - (xl,n+2 ) ) 2 ||n||o:+m‘ﬁ+m
=0 + X nt1 =0
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and if « = f§ — k, then

— S0+
[ e

o+m,o+m-+j

||n(m) | |zx+m,[i+m < DZ 1
Jj=0 + xn+1,n+1
1

o7 0\ 2 L
X (1 - (xljszr2+]) ) 2 ||TEH1+m,[3+m’ (312)

where

Db — nlrn+a+pf+m+1)
e\ (n=m)IT(n+ o+ B+ 1)

In particular, if £ =0, then « = f§ and

m n!F(n+m+2°‘+ 1) = o+, 0\ 2 .t
”ﬂm““WSVM_mwm+m+nIP“*mA/n2wuﬂww
1

which is a Markov-type inequality for ultraspherical polynomials. As a special case,
we obtain (0 == —Land m=1)

{2l

which was also found in [5]. In this way, we can obtain various kinds of inequalities
using (3.10), (3.11), and (3.12).

Acknowledgments

K.H. Kwon was partially supported by KRF-2002-070-C00004 and D.W. Lee was
supported by the Post-doctoral Fellowship Program of KOSEF. In the case studied
in Section 3 it can be seen easily, as the first step of the proof, that the extremal
polynomial is either even or odd. Hence the main result in Section 3 can be derived
from that of Section 2. Authors are grateful to the referee for this observation.

References

[1] LK. Daugavet, S.Z. Rafalson, Some inequalities of Markov—Nikolskii type for algebraic polynomials,
Vestnik Leningrad. Univ. Math. Mekh. Astronom. 1 (1972) 15-25.

[2] G. Freud, On the greatest zero of orthogonal polynomials 7, Acta Sci. Math. (Szeged) 34 (1973) 91-97.

[3] A. Guessab, G.V. Milovanovic, Weighted L?-analogues of Bernstein’s inequality and classical
orthogonal polynomials, J. Math. Anal. Appl. 182 (1994) 244-249.

[4] S.V. Konjagin, On estimates of derivatives of polynomials, Dokl. Akad. Nauk SSSR 243 (1978)
1116-1118.

[5] S.Z. Rafalson, Some sharp inequalities for algebraic polynomials, J. Approx. Theory 95 (1998)
161-171.

[6] G. Szegd, Orthogonal Polynomials, American Mathematical Society Colloquium Publications,
American Mathematical Society, NY, 1939.



	Inequalities of Rafalson type for algebraic polynomials
	Introduction
	Case dnu(x)=(A+Bx)dmu(x)
	Case dnu(x)=(A+Bx2)dmu(x)
	Acknowledgements
	References


